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ABSTRACT 
 
Pierre de Fermat noticed that in the diophantine equation аn + bn = cn, when n increases, the dif-

ference between cn and an + bn increases regardless of the choice of integers (a, b, c). He was struck by 

his discovery, so he has written “I have discovered a truly wonderful proof”. Pierre de Fermat realized 

that the difference cn – (аn + bn) is dependent on the exponent n. So he has reached term “function” in 

1637, before Leibniz (1670). It had been time to systematize and rationalize the concept “function” and 

to record ƒ(n) = cn – (аn + bn), but human life is too short. 

After Pierre de Fermat no man has realized the function ƒ(n) = cn – (аn + bn) “hidden” in diophan-
tine equation аn + bn = cn, so no one until now has reached the Fermat’s “beautiful proof”. 
The proof of Andrew Wiles and this proof will remain in the history of mathematics as an example of 
the following: 
 

 Using a lot of knowledge and less thinking the Fermat's Last Theorem can be proven indi-
rectly, complicated, writing more than one hundred pages, so that few people understand 
the proof. 
 

 Using a lot of thinking and less knowledge the Fermat's Last Theorem can be proved di-
rectly, simply, writing only a few pages, so it can be understood by almost everyone. 
When something can be shown directly, simple and understandable in a few pages it is 
folly to prove indirect, complicated and incomprehensible hundreds of pages. 

 
 
 

INTRODUCTION 
 
The achievement of Andrew Wiles in proving the Fermat’s Last Theorem published in the work 

“Modular elliptic curves and Fermat’s Last Theorem” [1] provokes the question: 
“Is that proof Pierre de Fermat had in mind, when in 1637  on the field of the book of Diophantus 

[2] he has written in Latin [3]: 
“It is impossible to separate a cube into two cubes, or a fourth power into two fourth powers, or in 

general, any power higher than the second, into two like powers. I have discovered a truly marvelous 
proof of this, which this margin is too narrow to contain.”  

Obviously, the extremely complicated indirect method of building the proof of the theorem used 
by Andrew Wiles, does not express the level of mathematical knowledge in the first half of the 17th cen-
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tury. Therefore, the question “What proof had in mind Pierre de Fermat?” will continue to excite the 
mathematical community to the moment of appearance of a proof of Fermat’s Last Theorem, that is to 
answer the question.  

Is it possible that happen after over 358 years no other proof has been found, unless submitted by 
Andrew Wiles? Alternatively, likely Pierre de Fermat has not found proof of his theorem, as it is assumed 
in the work [4], page 5: 

“He claimed that he had found a remarkable proof. There is some doubt as to various reasons. 
First, this note was published without his permission, in fact by his son after his death. Second, in his 
later correspondence Fermat discusses the case for n = 3 and 4, without mentioning this alleged evi-
dence. It seems as if this was an improvised comments that Fermat failed to erase“. 

This comment is logically untenable because: 

 Pierre de Fermat did not know about the interest in him and his notes that started after 
his death.  

 He has been engaged in mathematics in his free time.  

 After his death there was no way his son to seek permission from him to publish his notes. 

 That in his correspondence, after having discovered his theorem, are discussed the cases 
for n = 3 and n = 4 does not mean that he has not found a wonderful proof of the theo-
rem. In his correspondence everyone can discuss everything, depending on the situation. 

 
Taking into account that Pierre de Fermat is a genius mathematician is entirely possible that he 

was not mistaken and found “really wonderful proof” of his theorem.  
If the theorem proves with the knowledge of his time it will appear that everything written so 

far in connection with the proof of Fermat’s Last Theorem is incorrect. 
 
As Diophantine equation an + bn = cn is unsolvable in general, it follows: 
If Pierre de Fermat has discovered “really wonderful proof” of the theorem, then he noticed in 

equality аn + bn = cn not Diophantine equation everyone notice, but something else. 
 
In the following content under integers we will mean 1, 2, 3, 4, 5, . . . 
 
Pythagoras’s theorem may be expressed in the following form: 
For n = 2, there are integers (a, b, c), for which is satisfied the equation  
аn + bn = cn.                                                                                                                                                        
or in the form: 
For n = 2, there are integers (a, b, c), for which is satisfied the equation  
cn – (аn + bn) = 0                                                                                                                                                
Fermat’s Last Theorem may be expressed in the following form: 
For n > 2, there are no integers (a, b, c), for which is satisfied the equation  
cn – (аn + bn) = 0.                                                                                                                                                         
It follows from Fermat’s Last Theorem that for n > 2 is satisfied  
cn – (аn + bn) ≠ 0.                                                                                                                                               
We may combine both equalities cn – (аn + bn) = 0 and cn – (аn + bn) ≠ 0 can be united and we can 

write 
cn – (аn + bn) = m                                                                                                                                              (1) 

where for n = 2 is satisfied m = 0, and for n > 2 is satisfied m ≠ 0. 
It is noteworthy that in (1) where we have combined both equations (Pythagoras’ and Fermat’s) 

in one equation where the change of n from n = 2 to n > 2 changes also m from m = 0 to m ≠ 0.  
Then question raises: 
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Doesn’t it mean that between n and m = cn – (аn + bn) there is a functional dependence 
f(n) = cn – (аn + bn) 

wherein independently of the choice of integers (a, b, c) for each value of n corresponds a single value 
of f(n), and vice versa — to each value of f(n) corresponds a single value of n?  

Example 1: 
Let’s assume that (a, b, c) = (3, 4, 5).  
It is satisfied: 
32 + 42 = 52 and 52 – (32 + 42) = 0 
33 + 43 < 53 and 53 – (33 + 43) = 34  
34 + 44 < 54 and 54 – (34 + 44) = 288  
. . . . . . . . . . . . . . . . . . . . . . . . . . . 
From this example it is seen that for (a, b, c) = (3, 4, 5) for the integers it results:  
f(2) = 0; f(3) = 34; f(4) = 288; . . . ; f(n) = m; . . . 

and is evident that the correlation between n and f(n) is mutually uniquely. 
Example 2: 
Let’s assume that (a, b, c) = (3, 4, 5).  
It is satisfied: 
92 + 402 = 412 and 412 – (92 + 402) = 0 
93 + 403 < 413 and 413 – (93 + 403) = 4192  
94 + 404 < 414 and 414 – (94 + 404) = 259200 
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
From this example it is seen that for (a, b, c) = (9, 40, 41) is satisfied:  
f(2) = 0; f(3) = 4192; f(4) = 259200; . . . ; f(n) = m; . . . 
and is evident that the correlation between n and f(n) is mutually uniquely. 
 
Of both examples (and all other examples that we can review) it may be seen: 

 Between n and f(n) exists uniquely each line, regardless of the choice of integers (a, b, c).  

 When for n = 2 is satisfied cn – (аn + bn) = 0 and n increases, then the difference cn – (a2 + 
b2) increases and there is no way to get equality аn + bn = cn for n > 2, regardless of the 
choice of integers (a, b, c). 

Given the result the so far it follows: 
Fermat’s Last Theorem and the theorem of Pythagoras we can unite in the function in the follow-

ing form: 
ƒ(n) = cn – (аn + bn)                                                                                                                                           (2) 
where n is a positive integer, for which is satisfied n ≥ 2.                                                                        
 
Perhaps Pierre de Fermat had in mind the function (2), and not Diophantine equation аn + bn = cn, 

because (as it will be shown below) if used (2) it may be obtained simply and “really wonderful proof” of 
Fermat’s Last Theorem.  

If so, that means Pierre de Fermat has reached the term “function” in 1637, before Leibniz (1670). 
 
This work offers proof of Fermat’s Last Theorem, using the function (2) but expressed in such a 

way as to use the knowledge in mathematics from the time of Pierre de Fermat, in order to show two 
things: 

 Fermat’s Last Theorem can be proven with knowledge in mathematics from the time of 
Pierre de Fermat. 

 Pierre de Fermat has not lied, had not deceived himself and has not fantasized, as he 
wrote that he found “really wonderful proof” of his theorem.  
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There are integers (a, b, c), for which is satisfied the relationship  
a2+ b2 = c2                                                                                                                                                                                                                                                 (3) 
Example: 
32 + 42 = 52 

If (a, b, c) are three random integers, for them is always carried one of the three relationships:  
а2 + b2 < с2                                                                                                                                                         (4) 
а2 + b2 = c2                                                                                                                                                         (5) 
а2 + b2 > c2                                                                                                                                                         (6) 
Relationships (4), (5) and (6) we may write as follows: 
c2 – (а2 + b2) > 0                                                                                                                                             
c2 – (а2 + b2) = 0                                                                                                                                                        
c2 – (а2 + b2) < 0                                                                                                                                              

and combine in one relationship  
c2 – (а2 + b2) = m                                                                                                                                              (7) 

where for m may be satisfied: m > 0; m = 0; m < 0. 
Dependence (7) is a particular case of the relationship (1) because (7) is obtained by (1), for n = 2. 
 

Plan of the proof: 
Part 1: If for the integers (a, b, c) is satisfied а2 + b2 < c2, 
Part 2: For the integers (a, b, c) is satisfied а2 + b2 = c2, 
Part 3: For the integers (a, b, c) is satisfied а2 + b2 > c2, 
Part 4: Proof of Fermat’s Last Theorem, provided that for the integers (a, b, c) the function      
f(n) = cn - (an + bn) is satisfied. 
Part 5: Conclusion: 
 
If you use direct function (2), then the proof of Fermat's Last Theorem is expressed in a few lines, 

but can not fit in the margin of one page. 

The direct use of the function f(n) to prove the Fermat's Last Theorem was made in Part 4.  
Now our goal is different:  
To demonstrate that for all natural numbers (a, b, c) represented by the relations (4) ,(5) and (6) 

there is a function: 

ƒ(n) = cn – (аn + bn)                                                                                                                                       (8) 

wherein the correlation between n and f(n) is mutually uniquely, regardless of the choice of natural 

numbers (a, b, c).  
 

PART 1 
FOR INTEGERS (a, b, c) IS SATISFIED RELATIONSHIP а2 + b2 < с2. 
 
Theorem 1.1 
If for the integers (a, b, c) is satisfied а2 + b2 < с2, then for n > 2 is satisfied  
аn + bn < cn  and might not be satisfied аn + bn  = cn. 
Proof: 
We multiply both sides of the inequality а2 + b2 < c2 with cn-2 and we obtain  
а2.cn-2 + b2.cn-2 < с2.cn-2                                                                                                                                    (9) 

From the condition а2 + b2 < с2 follows  a2 < с2;  b2 < c2, where we can write 

аn-2 < cn-2; bn-2 < cn-2. 



5 
 

We multiply both sides of the inequality аn-2 < cn-2 with a2 and obtain  
a2.an-2 < a2.cn-2 
We multiply both sides of the inequality bn-2 < cn-2 with b2 and obtain  
b2.bn-2 < b2.cn-2 
Since a2.an-2 < a2.cn-2 and b2.bn-2 < b2.cn-2, when we replace in (9), а2.cn-2 с a2.an-2 and b2.cn-2 с b2.bn-2 

we obtain the stronger inequality  
а2.an-2 + b2.bn-2 < с2.cn-2                                                                                                                                 (10) 
Of (10) it derives: 

 For n > 2 is satisfied an + bn < cn. 

 Where n grows, inequality an + bn < cn strengthens as to each value of n corresponds one 
single value of cn - (an + bn). 

 For n > 2 is impossible to be satisfied the equality аn + bn = cn. 

 Mutually unambiguous correspondence between n and cn - (an + bn) is expressed by the 
function f(n) = cn - (an + bn). 

Example: 
Let’s assume that (a, b, c) = (3, 5, 7).  
It is satisfied: 
32 + 52 < 72 and 72 - (32 + 52) = 15 
33 + 53 > 73 and 73 - (33 + 53) = 191 
34 + 54 > 74 and 74 - (34 + 54) = 1695 
. . . . . . . . . . . . . . . . . . . . . . . . . . . 
From this example it is seen that for (a, b, c) = (3, 5, 7) for the integers it results:  
f(2) = 15; f(3) = 191; f(4) = 1695; . . . ; f(n) = m; . . . 

and is apparent that in the case for а2 + b2 < с2 correspondence between n and f(n) is mutually unambig-
uous. 

 

PART 2 
FOR INTEGERS (a, b, c) IS SATISFIED RELATIONSHIP а2 + b2 = с2. 
 
Theorem 2.1 
If for the integers (a, b, c) is satisfied а2 + b2 = c2,  
n > 2 is satisfied аn + bn < сn and might not be satisfied аn + bn = сn. 
Proof: 

From equality а2 + b2 = c2 follows а2 < c2; b2 < c2 and  а < c; b < c and for n > 2 is satisfied: 
an-2 <  cn-2                                                                                                                                                        (11) 
bn-2 <  cn-2                                                                                                                                                        (12) 
Multiplying both sides of (11) with а2, and both sides of (12) with b2, it is obtained 
а2.an-2 < а2.cn-2                                                                                                                                                (13) 
b2.bn-2 <  b2.cn-2                                                                                                                                              (14) 
When we sum left and right sides of both inequalities (13) and (14), it results 
а2.an-2 + b2.bn-2 < а2.cn-2 + b2.cn-2                                                                                                                 (15)  
When we multiply both sides of the equality а2 + b2 = c2 with cn-2 we receive  
а2.cn-2 + b2.cn-2 = c2.cn-2                                                                                                                                  (16)  
When replacing right side of (15) with its equal of (16), it results 
а2.an-2 + b2.bn-2 < c2.cn-2                                                                                                                                 (17)  
Of (17) it derives: 

 For n > 2 is satisfied an + bn < cn. 
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 Where n grows, inequality an + bn < cn strengthens as to each value of n corresponds one 
single value of cn - (an + bn). 

 For n > 2 is impossible to be satisfied the equality аn + bn = cn. 

 Mutually unambiguous correspondence between n and cn - (an + bn) is expressed by the 
function f(n) = cn - (an + bn). 

Example: 
Let’s assume that (a, b, c) = (3, 4, 5).  
It is satisfied: 
32 + 42 = 52 and 52 – (32 + 42) = 0 
33 + 43 < 53 and 53 – (33 + 43) = 34  
34 + 44 < 54 and 54 – (34 + 44) = 288  
. . . . . . . . . . . . . . . . . . . . . . . . . . .  
From this example it is seen that for (a, b, c) = (3, 4, 5) for the integers it results:  
f(2) = 0; f(3) = 34; f(4) = 288; . . . ; f(n) = m; . . . 

and is apparent that in the case for а2 + b2 = с2 correspondence between n and f(n) is mutually unambig-
uous. 

 
Lemma 2.1 
If for the integers s and q is satisfied s > q, when n increases, then difference sn – qn is growing. 
Proof:   
As s > q, we mark: 
s1 – q1 = p1 
s2 – q2 = p2  
s3 – q3 = p3 

s4 – q4 = p4 

. . . . . . . . . . 
sn – qn = pn 

. . . . . . . . . . 
For entered indications it may be written 
s1 – q1 = s – q = p1 
s2 – q2 = (s – q).(s + q) = p2 
s3 – q3 = (s – q).(s2+ s.q + q2) = p3 
s4 – q4 = (s – q).(s3+ s2.q + s.q2+ q3) = p4 
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
sn – qn = (s – q).(sn-1 + sn-2.q + sn-3.q2 + . . . + s.qn-2+ qn-1) = pn                                                                 (18)                                                              
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
Given that s and q are integers and s – q = p1 > 0, it follows: 
0 < p1 < p2 < p3 < p4 < . . . < pn . . . 
Theorem 2.2 
If for integers (a, b, c) for n = 2 is satisfied cn – (аn + bn) = 0,  
where n grows from 2 and tends to infinity, then difference 
cn – (аn + bn) grows from 0 and tends to infinity. 
Proof: 
If in (18) we lay down s = c and q = a, for degree n – 2 we obtain: 
cn-2 – аn-2 = (c – а).(cn-3 + cn-4.а + cn-5.а2 + . . . + c.аn-4 + аn-3) = pan                                                          (19)                                                     
If in (18) we lay down s = c and q = b for degree n – 2 we obtain: 
cn-2 – bn-2 = (c – b).(cn-3 + cn-4.b + cn-5.b2 + . . . + c.bn-4 + bn-3) = pbn                                                          (20) 
Multiplying both sides of(19) with а2, and both sides of (20) with b2, we receive 
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a2.cn-2 – a2.аn-2 = a2.pan                                                                                                                                 (21) 
b2.cn-2 – b2.bn-2 = b2.pbn                                                                                                                                 (22) 
When we sum both sides of both inequalities (21) and (22), is obtained 
a2.cn-2 + b2.cn-2 – (a2.аn-2 + b2.bn-2) = a2.pan + b2.pbn 

cn-2.(a2 + b2) – (аn + bn) = a2.pan + b2.pbn 
Given that it is satisfied, as provided that а2 + b2 = c2, it follows 
cn-2.c2  – (аn + bn) = a2.pan + b2.pbn 
cn  – (аn + bn) = a2.pan + b2.pbn 

Since according to the Lemma 2.1, pan and pbn grow, where n grows, it follows that where n grows 
of primary value n = 2 and tends to infinity, then difference cn – (аn + bn) increases from primary value 0 
and tends to infinity. 

Theorem 2.3 
If for n = 2 is satisfied an + bn = cn, then 

 For n > 2 is satisfied an + bn < cn. 

 For n < 2 is satisfied an + bn > cn. 

 For n > 2 and n < 2 is impossible to be satisfied the equality аn + bn = cn. 
Proof: 
According to Theorem 2.1, if for n = 2 is satisfied аn + bn = сn, where n increases (for n > 2) is satis-

fied аn + bn < сn and might not be satisfied аn + bn = сn. In that case between n and cn – (аn + bn) there is 
mutually unambiguous correspondence that is expressed by the function f(n) = cn - (an + bn).  

For n < 2 only one single value for n (n = 1) is possible, corresponding with one single value of the 
function f(1) = c1 - (a1 + b1). 

For n = 2 only one single value of the function f(2) = c2 - (a2 + b2) is possible. 
Example: 
31 + 41 > 51 and 51 – (31 + 41) = -2 
32 + 42 = 52 and 52 – (32 + 42) = 0 
33 + 43 < 53 and 53 – (33 + 43) = 34  
34 + 44 < 54 and 54 – (34 + 44) = 288  
. . . . . . . . . . . . . . . . . . . . . . . . . . .  
 
Insofar we explored the integers (а, b, с), where for their second degrees are satisfied relation-

ships a2 + b2 < c2, a2 + b2 = c2 and we proved that in both cases: 

 For n > 2, equality аn + bn = сn might not be satisfied in integers (a, b, c).  

 Between n and cn – (аn + bn) there is mutually unambiguous correspondence that is ex-
pressed by the function f(n) = cn - (an + bn). 

 
 
PART 3 
FOR INTEGERS (a, b, c) IS SATISFIED RELATIONSHIP а2 + b2 > с2. 
 
From the relationship а2 + b2 > с2, 9 cases are following: 
a2 > c2; b2 > c2 
a2 > c2; b2 < c2 
a2 < c2; b2 > c2 
a2 > c2; b2 = c2 
a2 = c2; b2 > c2 
a2 = c2; b2 < c2 
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a2 < c2; b2 = c2 
a2 = c2; b2 = c2 
a2 < c2; b2 < c2 

of which: 

 First case is limited to the second. 

 Fifth case is limited to the fourth. 

 Seventh case is limited to the sixth. 
and only 6 cases remain for review: 

a2 > c2; b2 > c2 
a2 > c2; b2 < c2 
a2 > c2; b2 = c2 

a2 = c2; b2 < c2 
a2 = c2; b2 = c2 
a2 < c2; b2 < c2 
 
Case 1:   
а2 + b2 > с2 and a2 > c2; b2 > c2.  
Theorem 3.1 
If a, b and c are integers for which is satisfied а2 + b2 > с2 and a2 > c2; b2 > c2, where n increases, 
for n > 2 is satisfied аn + bn > cn and might not be satisfied аn + bn = cn. 
Proof: 
Of a2 > c2; b2 > c2 it follows: an-2 > cn-2, bn-2 > cn-2, for n > 2.                                                      
When we multiply both sides of the inequality а2 + b2 > c2 with cn-2 we receive 
a2.cn-2 + b2. cn-2 > c2.cn-2                                                                                                                                 (23) 
When we multiply both sides of the inequality аn-2 > cn-2 with a2 and obtain 
a2.an-2 > a2.cn-2                                                                                                                               
When we multiply both sides of the inequality bn-2 > cn-2 with b2 and obtain  
b2.bn-2 > b2.cn-2 
Since a2.an-2 > a2.cn-2 and b2.bn-2 > b2.cn-2, when we replace in (23), а2.cn-2 with a2.an-2 and b2.cn-2 

with b2.bn-2 we obtain the stronger inequality  
а2.an-2 + b2.bn-2 > с2.cn-2                                                                                                                                 (24) 
Of (24) it derives: 

 For n > 2 is satisfied a + bn > cn. 

 Where n grows, inequality an+ bn > cn strengthens as to each value of n corresponds one 
single value of cn - (an + bn). 

 For n > 2 is impossible to be satisfied the equality аn + bn = cn. 

 Mutually unambiguous correspondence between n and cn - (an + bn) is expressed by the 
function f(n) = cn - (an + bn). 

Example: 
42 + 52 > 32 and 32 - (42 + 52) = - 32 
43 + 53 > 33 and 33 - (43 + 53) = - 164 
44 + 54 > 34 and 34 - (44 + 54) = - 800 
. . . . . . . . . . . . . . . . . . . . . . . . . . . 
 
Case 2: 
а2 + b2  >  с2; a2 > c2 ; b2 < c2 
Theorem 3.2 
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If (а, b, с) are integers for which is satisfied а2 + b2 > с2; a2 > c2; b2 < c2, where n  
grows for n > 2 is satisfied аn + bn > сn and might not be satisfied аn + bn = сn. 
Proof:  
Of a2 > c2; b2 < c2 it follows: an-2 > cn-2, bn-2 < cn-2, for n > 2.                                                      
When we multiply both sides of the inequality а2 + b2 > c2  with cn-2 we receive 
a2.cn-2 + b2.cn-2 > c2.cn-2                                                                                                                                  (25) 
When we multiply both sides of the inequality аn-2 > cn-2 with a2 and obtain 
a2.an-2 > a2.cn-2                                                                                                                               
When we multiply both sides of the inequality bn-2 < cn-2 with b2 and obtain  
b2.bn-2 < b2.cn-2 
Since a2.an-2 > a2.cn-2 (regardless the value of 2.bn-2), when we replace in (25), а2.cn-2 with a2.an-2 

and b2.cn-2 with b2.bn-2 we obtain  
а2.an-2 + b2.bn-2 > с2.cn-2                                                                                                                                 (26) 
Of (26) it derives: 

 For n > 2 is satisfied an + bn > cn. 

 Where n grows, inequality an + bn > cn strengthens as to each value of n corresponds one 
single value of cn - (an + bn). 

 For n > 2 is impossible to be satisfied the equality аn + bn = cn. 

 Mutually unambiguous correspondence between n and cn - (an + bn) is expressed by the 
function f(n) = cn - (an + bn). 

Example: 
72 + 32 > 52 and 52 - (72 + 32) = - 34 
73 + 33 > 53 and 53 - (73 + 33) = - 245 
74 + 34 < 54 and 54 – (74 + 34) = - 1857 
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 
 
Case 3: 
а2 + b2 > с2; a2 > c2; b2 = c2 
Theorem 3.3 
If (а, b, с) are integers for which is satisfied а2 + b2 > с2; a2 > c2; b2 = c2, where n  
grows for n > 2 is satisfied аn + bn > сn and might not be satisfied аn + bn = сn. 
Proof:  
Of a2 > c2; b2 = c2 it follows: an-2 > cn-2, bn-2 = cn-2, for n > 2.                                                      
When we multiply both sides of the inequality а2 + b2 > c2 with cn-2 we receive 
a2.cn-2 + b2.cn-2 > c2.cn-2                                                                                                                                 (27) 
When we multiply both sides of the inequality аn-2 > cn-2 with a2 and obtain 
a2.an-2 > a2.cn-2                                                                                                                               
When we multiply both sides of the equality bn-2 = cn-2 with b2 and obtain  
b2.bn-2 = b2.cn-2 
Since a2.an-2 > a2.cn-2 and b2.bn-2 > b2.cn-2, when we replace in (27), а2.cn-2 with a2.an-2 and b2.cn-2 

with b2.bn-2 we obtain  
а2.an-2 + b2.bn-2 > с2.cn-2                                                                                                                                 (28) 
Of (28) it derives: 

 For n > 2 is satisfied an + bn > cn. 

 Where n grows, inequality an + bn > cn strengthens as to each value of n corresponds one 
single value of cn - (an + bn). 

 For n > 2 is impossible to be satisfied the equality аn + bn = cn. 
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 Mutually unambiguous correspondence between n and cn - (an + bn) is expressed by the 
function f(n) = cn - (an + bn). 

Example: 
72 + 52 > 52 and 52 - (72 + 52) = - 49 
73 + 53 > 53 and 53 - (73 + 53) = - 343 
74 + 54 > 54 and 54 - (74 + 54) = - 2401 
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 
 
Case 4: 
а2 + b2 > с2; a2 = c2 ; b2 < c2 
Theorem 3.4 
If (а, b, с) are integers for which is satisfied а2 + b2 > с2; a2 = c2; b2 < c2, where n  
grows for n > 2 is satisfied аn + bn > сn and might not be satisfied аn + bn = сn. 
Proof:  
Of a2 = c2; b2 < c2 it follows: an-2 = cn-2 , bn-2 < cn-2, for n > 2.                                                      
When we multiply both sides of the inequality а2 + b2 > c2 with cn-2 it results 
a2.cn-2 + b2.cn-2 > c2.cn-2                                                                                                                                 (29) 
When we multiply both sides of the equality аn-2 = cn-2 with a2 we obtain 
a2.an-2 = a2.cn-2                                                                                                                               
When we multiply both sides of the inequality bn-2 < cn-2 with b2 and obtain  
b2.bn-2 < b2.cn-2 
Since a2.an-2 = a2.cn-2 and b2.bn-2 < b2.cn-2, when we replace in (29), а2.cn-2 with a2.an-2 and b2.cn-2 

with b2.bn-2 we obtain  
а2.an-2 + b2.bn-2 > с2.cn-2                                                                                                                                 (30) 
Of (30) it derives: 

 For n > 2 is satisfied an + bn > cn. 

 Where n grows, inequality an + bn > cn strengthens as to each value of n corresponds one 
single value of cn - (an + bn). 

 For n > 2 is impossible to be satisfied the equality аn + bn = cn. 

 Mutually unambiguous correspondence between n and cn - (an + bn) is expressed by the 
function f(n) = cn - (an + bn). 

Example: 
52 + 72 > 52 and 52 - (52 + 72) = - 49 
53 + 73 > 53 and 53 - (53 + 73) = - 343 
54 + 74 > 54 and 54 - (54 + 74) = - 2401 
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 
 
Case 5: 
а2 + b2  >  с2; a2 = c2 ; b2 = c2 
Theorem 3.5 
If (а, b, с) are integers for which is satisfied а2 + b2 > с2; a2 = c2; b2 = c2, where n  
grows for n > 2 is satisfied аn + bn > сn and might not be satisfied аn + bn = сn. 
Proof:  
Of a2 = c2; b2 = c2 it follows: an-2 = bn-2 = cn-2, for n > 2.                                                      
When we multiply both sides of the inequality а2 + b2 > c2 with cn-2we receive 
a2.cn-2 + b2.cn-2 > c2.cn-2                                                                                                                                 (31) 
When we multiply both sides of the equality аn-2 = cn-2 with a2 we obtain 
a2.an-2 = a2.cn-2                                                                                                                               
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When we multiply both sides of the equality bn-2 = cn-2 with b2 and obtain  
b2.bn-2 = b2.cn-2 
When replacing in (31), а2.cn-2 with c2.cn-2 and b2.cn-2 with c2.cn-2 we obtain strengthened inequality 
c2.cn-2 + c2.cn-2 > с2.cn-2                                                                                                                                  (32) 
Of (32) it derives: 

 For n > 2 is satisfied an + bn > cn. 

 Where n grows, inequality an + bn > cn strengthens as to each value of n corresponds one 
single value of cn - (an + bn). 

 For n > 2 is impossible to be satisfied the equality аn + bn = cn. 

 Mutually unambiguous correspondence between n and cn - (an + bn) is expressed by the 
function f(n) = cn - (an + bn). 

Example: 
52 + 52 > 52 and 52 - (52 + 52) = - 25 
53 + 53 > 53 and 53 - (53 + 53) = - 125 
54 + 54 > 54 and 54 - (54 + 54) = - 625 
. . . . . . . . . . . . . . . . . . . . . . . . . . . 
 
Of the five cases reviewed  
a2 > c2; b2 > c2 
a2 > c2; b2 < c2 
a2 > c2; b2 = c2 

a2 = c2; b2 < c2 
a2 = c2; b2 = c2 

given that а2 + b2 > с2, it follows: 

 For n < 2 is satisfied the inequality an + bn > cn. 

 For n > 2 might not be satisfied the equality аn + bn = cn. 

 Where n grows (for n > 2), difference between cn and аn + bn increases. 

 Between n and cn – (аn + bn) there is mutually unambiguous correspondence that is ex-
pressed by the function f(n) = cn - (an + bn). 

 
The sixth (last) case remained for consideration that is more special than others thus deserving 

more attention. 
 
Case 6: 
а2 + b2 > с2 and a2 < c2; b2 < c2 
 
Theorem 3.6 
If (а, b, с) are integers for which is satisfied а2 + b2 > с2; a2 < c2; b2 < c2, where n  
grows, for n > 2  there is a value of n (n = k) so: 

 For n ≤ k is satisfied an + bn > cn.  

 For n > k is satisfied an + bn > cn. 

 For n = 2 might not be satisfied аn + bn = cn. 

 The value of n (n = k) after which the inequality аn + bn > cn reverses its direction and is 
dependent of the integers (а, b, с). 

Proof:  
According to Lemma 2.1 
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 Where n increases, for n > 2 difference between cn and an is increasing (cn grows faster 
than an). 

 Where n increases, for n > 2 difference between cn and bn is increasing (cn grows faster 
than bn). 

That means: 
Where n grows (provided that а2 + b2 > с2 and a2 < c2; b2 < c2), there is a value of n (n = k + 1), 

where inequality аn + bn > cn reverses direction, and acquires type аn + bn < cn.  
Example 1: 
72 + 82 > 92 and 92 – (72 + 82) = -32 
73 + 83 > 93 and 93 – (73 + 83) = -126 
74 + 84 < 94 and 94 – (74 + 84) = 64 
75 + 85 < 95 and 95 – (75 + 85) = 9474 
76 + 86 < 96 and 96 – (76 + 86) = 151648 
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
From this example it follows: 

 93 – (73 + 83) < 92 – (72 + 82).  

 94 – (74 + 84) < 95 – (75 + 85) < 96 – (76 + 86) < . . .   

 Value of n, after which the inequality 7n + 8n > 9n reverses its direction, is k = 3.  

 For n < 3 is satisfied 7n + 8n < 9n.  

 For n > 3, where n grows, inequality 7n + 8n < 9n strengthens as to each value of n corre-
sponds one single value of 9n – (7n + 8n).  

 For n > 3 might not be satisfied the equality 7n + 8n = 9n. 

 Mutually unambiguous correspondence between n and 9n - (7n + 8n) is expressed by the 
function f(n) = 9n - (7n + 8n).  

Example 2: 
192 + 202 > 212 и 212 - (192 + 202) = -320 
193 + 203 > 213 и 213 - (193 + 203) = -5598 
194 + 204 > 214 и 214 - (194 + 204) = -95840 
195 + 205 > 215 и 215 - (195 + 205) = -1591998 
196 + 206 > 216 и 216 - (196 + 206) = -25279760 
197 + 207 > 217 и 217 - (197 + 207) = -372783198 
198 + 208 > 218 и 218 - (198 + 208) = -4760703680 
199 + 209 > 219 и 219 - (199 + 209) = -40407651198 
1910 + 2010 < 2110 и 2110 - (1910 + 2010) = 308814720400 
1911 + 2011 < 2111 и 2111 - (1911 + 2011) = 28987241644002 
1912 + 2012 < 2112 и 2112 - (1912 + 2012) = 1046512592320480 
1913 + 2013 < 2113 и 2113 - (1913 + 2013) = 30499394276862402 
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
From this example it follows: 

 219 - (199 + 209) < 218 - (198 + 208 ) < 217 - (197 + 207) < 216 - (196 + 206) < 215 - (195 + 205) < 
< 214 - (194 + 204) < 213 - (193 + 203) < 212 - (192 + 202) 

 2110 - (1910 + 2010) < 2111 - (1911 + 2011) < (1912 + 2012) < 2113 - (1913 + 2013) < . . .  

 Value of n, after which the inequality 19n + 20n > 21n reverses its direction, is k = 9.  

 For n < 9 is satisfied 19n + 20n < 21n.  

 For n > 9, where n grows, inequality 19n + 20n < 21n strengthens as to each value of n cor-
responds one single value of 21n – (19n + 20n).  

 For n > 9 might not be satisfied the equality 19n + 20n = 21n. 



13 
 

 Mutually unambiguous correspondence between n and 21n - (19n + 20n) is expressed by 
the function f(n) = 21n - (19n + 20 ).  

 
From both examples (and all other examples that we may review) it is seen that where n increas-

es, given that а2 + b2 > с2 and a2 < c2; b2 < c2: 

 The inequality an + bn > cn (for n < k) leads to the inequality an + bn < cn (for n > k), without 
passing through inequality аn + bn = cn (for n = k). 

 For n > k is satisfied an + bn < cn. 

 For n ≤ k is satisfied an + bn > cn.  

 The value of n, (n = k) after which the inequality аn + bn > cn reverses its direction and is 
dependent of the selection of integers (а, b, с). 

 Between n and cn – (аn + bn) there is mutually unambiguous correspondence that is ex-
pressed by the function f(n) = cn – (an + bn). 

 
We explored the inequality аn + bn < cn in Part 1 .  
From Theorem 1.1 and obtained above it follows: 

 For n > k is satisfied an + bn < cn. 

 For n > k, where n grows, inequality an + bn < cn strengthens as to each value of n corre-
sponds one single value of cn - (an + bn). 

 For n > k might not be satisfied the equality аn + bn = cn. 

 Mutually unambiguous correspondence between n and cn - (an + bn) is expressed by the 
function f(n) = cn - (an + bn). 

Only the inequality an + bn > cn, for n ≤ k remained to be explored. 
Of а2 + b2 > с2, it follows: 
c2 - (а2 + b2) < 0                                                                                                                                              (33)     
We multiply both sides of (33) with c and we obtain 
c2.c - (а2.c + b2.c) < 0                                                                                                                                     (34) 
It is satisfied:  
c2.c - (а2.c + b2.c) < c2 - (а2 + b2) < 0. 
Of a2 < c2; b2 < c2 we obtain a < c; b < c. 
Because a < c; b < c it follows a2.a < a2.c; b2.b < b2.c. 
Replacing in (34) a2.c with a2.a; b2.c with b2.b, we obtain 
c2.c - (а2.a + b2.b) < 0                                                                                                                                    (35) 

since а2.a + b2.b < а2.c + b2.c it follows 
c2.c - (а2.a + b2.b) < c2.c - (а2.c + b2.c) < c2 - (а2 + b2) < 0 
c3 - (а3 + b3) < c2 - (а2 + b2) 
In the same way we obtain 
ck - (аk + bk) < . . . < c4 - (а4 + b4) < c3 - (а3 + b3) < c2 - (а2 + b2) < 0                                                        (36) 
Where n increases in the closed interval [2, k], then the difference between cn and аn + bn is in-

creasing and an equality might not be obtained. For n > k the inequality reverses its direction. We have 
studied this case in Part 1 and there when n increases by the value of n = k + 1 to infinity, the difference 
between cn and аn + bn increases and an equality might not be obtained. 

As of each value of n for n  [2, k] and n > k corresponds only one value of cn – (an + bn), it follows 
that between n and cn – (an + bn) there is mutual uniquely line, which is expressed by the function f(n) = 
cn – (an + bn). 

From insofar obtained for n > 2 and n < k + 1, where n grows, in а2 + b2 > с2 and a2 < c2; b2 < c2, it 
follows: 
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 The inequality an + bn > cn (for n < k) leads to the inequality an + bn < cn (for n > k), without 
passing through inequality аn + bn = cn (for n = k). 

 For n > k is satisfied an + bn < cn. 

 For n ≤ k is satisfied an + bn > cn.  

 The value of n, (n = k) where the inequality аn + bn > cn reverses its direction is dependent 
of the selection of integers (а, b, с). (there is nothing else in the expression cn – (an + bn), 
from which k may be dependent). 

 Between n and cn – (аn + bn) there is mutually unambiguous correspondence that is ex-
pressed by the function f(n) = cn – (an + bn). 

 
We explored the integers (а, b, с), where for their second degrees are satisfied relationships        

a2 + b2 < c2, a2 + b2 = c2, a2 + b2 > c2 and we proved that in all cases: 

 For n > 2, equality аn + bn = сn might not be satisfied in integers  
(a, b, c).  

 Between n and cn – (аn + bn) there is mutually unambiguous correspondence that is ex-
pressed by the function f(n) = cn - (an + bn). 

That means: 

 Equality аn + bn = cn is possible in integers (a, b, c) for n = 2. 

 Equality аn + bn = cn is not possible in integers (a, b, c) for n > 2. 
 
By that, the most complete, most accurate, most consistent and most general proof of Fermat’s 
Last Theorem, with the mathematical knowledge from the first half of the 17th century, has been 
completed. 
 
 
 

PART 4 
PROOF OF FERMAT’S LAST THEOREM, PROVIDED THAT FOR INTEGERS (a, b, c) is Satisfied The 
Function f(n) = cn - (an + bn). 
 
Existence of the function f(n) = cn - (an + bn ) and of the mutually unambiguous correspondence 

between n and f(n) is evident and does not need any proof.  
To prove the existence of function f(n) = cn - (an + bn ) is tantamount to prove the existence of 

function f(x) = a.x2 +b.x + c. 
Nevertheless, the proofs we have made in Part 1, Part 2 and Part 3 were necessary to recognize 

the existence of the function f(n) = cn - (an + bn ) and its amazing properties.  
Here the variable is n, and not the integers (a, b, c).  
Integers (a, b, c) are randomly selected. Where n changes, function f(n) changes, and not integers 

(a, b, c) (the argument is n). In the modification of n the function changes, but so that to each of the 
argument n corresponds to a single value of the function f(n) and to each value of the function f(n) cor-
responds one single value of the argument n. 

It is impossible and improper the function f(n) = cn - (an + bn) to be regarded as an argument and 
the argument n to be regarded as a feature. 

Given the result the so far it follows 

 For n = 2 there are integers (a, b, c), for which is satisfied f(n) = 0. 

 For n > 2 there are no integers (a, b, c), for which is satisfied f(n) = 0. 
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Fermat's Last Theorem 
Equality аn + bn = cn is not possible in integers (a, b, c) for n > 2. 
Proof: 

From the fact that for positive integers (a, b, c) when n = 2 is satisfied f(2) = 0 it follows that for 

n > 2 can not be satisfied  f(n) = 0, since the disturbing the mutually uniquely correlation between n 

and f(n).  

In the selected positive integers (a, b, c) cannot, at two different values of n (n = 2 and n = k > 2) 

to correlate one the same value of f(n) ( f(2) = 0 and f(k) = 0). 

A value of n may be compared with different values of f(n), only when changing the integers  

(a, b, c). 
With this the proof of Fermat’s Last Theorem is complete. 
Obviously, Pierre de Fermat was right, recording that the proof of his theorem might not fit in 

the box on the page, but using function it might be.   
 

PART 5 
CONCLUSION: 
 
It appeared that the simple evidence mentioned by Pierre de Fermat exists.  
That means: 
Pierre de Fermat has not lied, had not deceived himself and has not fantasized, as he recorded 

that he found “really wonderful proof” of his theorem. 
Even more: 
Pierre de Fermat was the first person on Earth reaching the term “function”. 
 
Presented in this work, proof of Fermat’s Last Theorem allows us to note the following: 
● Proof of Fermat’s Last Theorem may be accomplished using mathematical knowledge from the 

first half of the 17th century as in the above discussion the term “function” may be avoided. 

● Pierre de Fermat was aware that Diophantine equation аn + bn = cn may be represented as a 
function that makes the proof of the theorem his “really wonderful”.  

Perhaps Pierre de Fermat did not publish his proof, because he wanted to link it with the term 
“function”, but since has failed to properly define for the rest of his life, the proof remained not pub-
lished. 

We hope that in this way we have succeeded to protect the authority of Pierre de Fermat and re-
move doubts in his genius that emerged after the evidence of Andrew Wiles and the claim that only 
mediocre, with "unsuccessful career" people can look for simple proof of Fermat's last theorem [5]. 

In this way Pierre de Fermat was placed at the level of mediocre people because he is a lawyer by 
education and He was not only looking for simple proof of the theorem, but he even wrote "I have dis-
covered a truly marvelous proof of this, which this margin is too narrow to contain.”  

 
We, ordinary people, must learn to respect genius. 
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